Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Diaquabis(dimethyl sulfoxide)bis(3,5dinitrobenzoato)zinc(II) and the synthesis of the Cu, Ni and Co analogs

Elguja B. Miminoshvili, ${ }^{\text {a }}$ Alexandre N. Sobolev, ${ }^{\text {b* }}$ * Tamara N. Sakvarelidze, ${ }^{\text {a }}$ Ketevan E. Miminoshvili ${ }^{a}$ and Elguja R. Kutelia ${ }^{\text {a }}$
${ }^{\text {a }}$ Republican Centre of Structural Studies, Georgia Technical University, 77 Kostava Avenue, Tbilisi 380075, Georgia, and ${ }^{\text {b }}$ Chemistry Section, School of Biomedical and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009 WA, Australia
Correspondence e-mail: ans@crystal.uwa.edu.au

Received 18 November 2002
Accepted 18 February 2003
Online 11 March 2003

In order to model processes of chemisorption in organic salts formed between dinitrobenzoic acids (DNBH) and secondary amines $\left(R_{2} \mathrm{NH}\right)$, a series of compounds of composition $\left[M^{\mathrm{II}}(3,5-\mathrm{DNB})_{2}(\mathrm{DMSO})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (where M^{II} is $\mathrm{Zn}, \mathrm{Cu}, \mathrm{Ni}$ or Co, $3,5-\mathrm{DNB}$ is the 3,5 -dinitrobenzoate ion, and DMSO is dimethyl sulfoxide) have been prepared. In diaquabis(dimethyl sulfoxide) bis(3,5-DNB)zinc(II), $\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, the $3,5-\mathrm{DNB}$ ions and molecules of DMSO are monodentate ligands that are coordinated to the Zn atom through their O atoms. These ligands, together with two molecules of water, form a slightly distorted octahedral coordination environment for the Zn atom, which lies on a center of symmetry.

Comment

The complexes of $\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}$ and Zn obtained by the reaction of dialkylammonium 3,5-dinitrobenzoates with hydrated metal sulfates in dimethyl sulfoxide (DMSO) have the same stoichiometry, with two molecules each of water and DMSO accompanying each metal bis(3,5-dinitrobenzoate) moiety. Both the 3,5 -dinitrobenzoate ion ($3,5-\mathrm{DNB}$) and the DMSO ligands are known to be versatile reagents that, in complexes of such ligands with metals, can interact with the metal cation or remain as counter-anions (Hundal et al., 1996) or lattice 'solvents', and thus play significant roles in the hydrogen bonding in the crystal structures. When involved in coordination processes, benzoates exhibit a wide range of coordination modes. The carboxylate group can coordinate the metal ions in a monodentate, bidentate or bridging fashion. A typical example of monodentate coordination of $3,5-\mathrm{DNB}$ is in the structure of tetraaquabis(3,5-DNB)cobalt(II) tetrahydrate
(Tahir et al., 1996), where 3,5-DNB ions are involved in the coordination sphere of the Co atom in trans positions. The benzoate ions act as bidentate ligands in complexes such as bipyridinebis(p-nitrobenzoato)copper(II) (Usubaliev et al., 1981) and tetrakis(benzoato)bis(pyridine)dicopper(II) (Speier \& Fülöp, 1989), where Cu atoms are octahedrally coordinated by four O atoms from two carboxyl groups and two N atoms from the two pyridines in a trans configuration. The $\left[\mathrm{Cu}_{3}-\right.$ $\left.(3,5-\mathrm{DNB})_{6}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\right]_{n}$ complex is a linear polymeric chain, in which the $3,5-\mathrm{DNB}$ ions form all of the bridges (Hökelek et al., 1998). The DMSO molecule can have different modes of coordination or can pack in the crystals as crystalline solvent molecules. The reaction of benzylamine with palladium chloride in the presence of DMSO gives $\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right)_{2}\right]$-$2 \mathrm{Me}_{2} \mathrm{SO}$ (Decken et al., 2000). In the crystal structure, these molecules are packed in such way that each DMSO molecule bridges two palladium complex molecules through long-range intermolecular interactions ($\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{H} \cdots \mathrm{O}$), thus forming infinite chains. In complexes of platinum with 2-methoxypyridine, of composition $\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right.$] (Arvanitis et al., 2000), and in $\left[\mathrm{RuCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}\right)\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{2}\right](\mathrm{Pal} \&$ Pal, 2002), DMSO is coordinated to the metal atoms through

(I)
the S atom. The same type of coordination is observed in heteroligand complexes of ruthenium(II) (Coe et al., 1993) and vanadium(III) (Magill et al., 1993). In the trinuclear $\left[\mathrm{Ni}_{3}-\right.$ $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{2}$] complex with salicyl-idene-1,3-propanediaminate ligands (Ülkü et al., 1997), the coordination octahedron of the terminal Ni atoms comprises

Figure 1
The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
two O and two N atoms of the aromatic ligand in the equatorial plane and O atoms of acetate and DMSO molecules in axial positions. It has been reported that $[\mathrm{Ru}(\mathrm{tpy})(\mathrm{b}-$ py)(DMSO)] $\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ (tpy is terpyridine and bpy is bipyridine) demonstrates intermolecular phototriggered linkage isomerism in the solid state (Rack et al., 2001).

In the title compound, (I), Zn is shown to lie on a crystallographic center of symmetry, with the ligands bonded to Zn in an all-trans fashion (Fig. 1). The coordination polyhedron around the Zn atom is a slightly distorted octahedron (Table 1) that involves the O atoms of the DMSO groups in axial positions. The $\mathrm{O}-\mathrm{Zn}-\mathrm{O}$ angles around the Zn atom are in the range 86.53 (3)-93.47 (3) ${ }^{\circ}$ (Table 1). The $\mathrm{Zn}-\mathrm{O} 11$ bond is slightly longer than other examples in the literature [e.g. $\mathrm{Zn}-\mathrm{O}_{\text {DMSO }}=2.122 \AA$ (Lalioti et al., 1998) or 2.10 (1) and 2.12 (1) A (Persson, 1982)]. The $\mathrm{Zn}-\mathrm{O} 71$ distance falls within the range for typical $\mathrm{Zn}-\mathrm{O}_{\text {carboxylate }}$ bonds [2.047 (1)2.180 (2) \AA], and the $\mathrm{Zn}-\mathrm{O} 1$ distance is also comparable to literature values $\left[\mathrm{Zn}-\mathrm{O}_{\text {water }}=2.052\right.$ (1)-2.195 (3) \AA; ArranzMascaros et al., 2000; Lalioti et al., 1998; Nefedov et al., 1991; Persson, 1982; Sequeira et al., 1992; Tahir et al., 1997]. The other ligand geometries correspond to normal values and are in good agreement with literature data (Shvelashvili et al., 2001). The conformation of the molecule is described by the dihedral and torsion angles. The angle between the plane of the carboxylate groups and the equatorial plane formed by water atom O 1 , the Zn atom and carboxyl atom O 71 is $13.7(1)^{\circ}$; the angle between the equatorial plane and the plane of the benzene ring is $23.2(1)^{\circ}$. The nitro and carboxylate groups of the $3,5-\mathrm{DNB}$ molecules are planar and are approximately coplanar with the benzene ring; the angles between the benzene ring and planes O71/C7/O72, O31/N3/ O 32 and $\mathrm{O} 51 / \mathrm{N} 5 / \mathrm{O} 52$ are $10.1(1), 5.1(2)$ and $8.2(1)^{\circ}$, respectively. The coordinated water molecules are bonded to the uncoordinated carboxylate O atoms with particularly strong intramolecular hydrogen bonds $\left[\mathrm{O} 1 \cdots \mathrm{O} 72^{\mathrm{i}}=\right.$ 2.6292 (11) \AA; symmetry code: (i) $1-x,-y, 1-z]$. The

Figure 2
Perspective packing diagram in the [101] projection, showing the intermolecular hydrogen bonds (dashed lines).
orientation of the DMSO fragment in the molecule can be described by the angle between planes $\mathrm{O} 1 / \mathrm{Zn} / \mathrm{O} 11$ and $\mathrm{Zn} /$ O11/S1 [14.7 (1) $\left.{ }^{\circ}\right]$, where one of the methyl groups (atom C11) lies almost in the $\mathrm{Zn} / \mathrm{O} 11 / \mathrm{S} 1$ plane. The $\mathrm{C} 11-\mathrm{S} 1-$ $\mathrm{O} 11-\mathrm{Zn}$ torsion angle is $176.49(5)^{\circ}$ and $\mathrm{C} 12-\mathrm{S} 1-\mathrm{O} 11-\mathrm{Zn}$ is $-80.86(6)^{\circ}$. The crystal packing of (I) consists of columns parallel to the b axis (Fig. 2), where molecules in neighboring columns are linked by weak hydrogen bonds (Table 2) that comprise the shortest intermolecular interaction.

The $3,5-\mathrm{DNB}$ ion and DMSO are monodentate ligands that are coordinated to the metal through their O atoms. This conformation reflects the chemisorption processes and confirms that dinitrobenzoates may act as corrosion inhibitors. The monodentate carboxylate O -atom binding implies that the rest of the ligand should project from the metal surface, thus inhibiting the approach of further molecules to the metal.

Experimental

Solutions of $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(1.43 \mathrm{~g}, 0.005 \mathrm{~mol})$ in DMSO $(15 \mathrm{ml})$ and piperidinium 3,5 -dinitrobenzoate $(2.86 \mathrm{~g}, 0.010 \mathrm{~mol})$ in DMSO $(15 \mathrm{ml})$ were mixed and filtered. The filtrate was allowed to stand at room temperature for 24 h over which time colorless crystals deposited slowly. The crystals were collected, washed with diethyl ether and dried at room temperature (Table 3). The same technique was used for the synthesis of analogous compounds with Cu, Ni and Co. All the complexes obtained in this way showed low solubility in water. 2,4-Dinitrobenzoates could be obtained with similar ease.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$D_{x}=1.795 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=679.89$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / n$	Cell parameters from 8192
$a=10.479(2) \AA$	reflections
$b=5.296(1) \AA$	$\theta=16.4-37.5^{\circ}$
$c=22.686(5) \AA$	$\mu=1.23 \mathrm{~mm}^{-1}$
$\beta=91.96(3)^{\circ}$	$T=153(2) \mathrm{K}$
$V=1258.3(4) \AA^{3}$	Prism, colorless
$Z=2$	$0.20 \times 0.20 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.791, \quad T_{\text {max }}=0.847$
24698 measured reflections

> 6588 independent reflections
> 5319 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.031$
> $\theta_{\max }=37.6^{\circ}$
> $h=-17 \rightarrow 17$
> $k=-9 \rightarrow 8$
> $l=-38 \rightarrow 38$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Zn}-\mathrm{O} 1$	$2.0857(7)$	$\mathrm{S} 1-\mathrm{O} 11$	$1.5245(8)$
$\mathrm{Zn}-\mathrm{O} 11$	$2.1475(8)$	$\mathrm{S} 1-\mathrm{C} 11$	$1.7875(10)$
$\mathrm{Zn}-\mathrm{O} 71$	$2.0747(7)$	$\mathrm{S} 1-\mathrm{C} 12$	$1.7846(11)$
$\mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 11$	$86.53(3)$	$\mathrm{O} 11-\mathrm{S} 1-\mathrm{C} 11$	$103.63(5)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zn}-\mathrm{O} 11$	$93.47(3)$	$\mathrm{O} 11-\mathrm{S} 1-\mathrm{C} 12$	$105.92(5)$
$\mathrm{O} 11-\mathrm{Zn}-\mathrm{O} 71$	$85.81(3)$	$\mathrm{C} 12-\mathrm{S} 1-\mathrm{C} 11$	$98.05(5)$
$\mathrm{O} 11-\mathrm{Zn}-\mathrm{O} 71^{\mathrm{i}}$	$94.19(3)$	$\mathrm{S} 1-\mathrm{O} 11-\mathrm{Zn}$	$128.21(4)$
$\mathrm{O} 71-\mathrm{Zn}-\mathrm{O} 1$	$88.61(3)$	$\mathrm{C} 7-\mathrm{O} 71-\mathrm{Zn}$	$127.75(6)$
$\mathrm{O} 71-\mathrm{Zn}-\mathrm{O} 1^{\mathrm{i}}$	$91.39(3)$		

Symmetry code: (i) $1-x,-y, 1-z$.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.071$
$S=1.01$
6588 reflections
195 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.04 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.61 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}
\end{aligned}
$$

SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.

The authors thank Professor Allan H. White and Associate Professor Jack M. Harrowfield for experimental assistance and helpful discussion.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1404). Services for accessing these data are described at the back of the journal.

References

Arranz-Mascaros, P., Lopez-Garzon, R., Gutierrez-Valero, M. D., GodinoSalido, M. L. \& Moreno, J. M. (2000). Inorg. Chim. Acta, 304, 137-143.
Arvanitis, G. M., Holmes, C. E., Johnson, D. G. \& Berardini, M. (2000). Acta Cryst. C56, 1332-1333.
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Coe, B. J., Meyer, T. J. \& White, P. S. (1993). Inorg. Chem. 32, 4012-4020.
Decken, A., Pisegna, G. L., Vogels, C. M. \& Westcott, S. A. (2000). Acta Cryst. C56, 1071-1072.
Hundal, G., Martinez-Ripoll, M., Hundal, M. S. \& Poonia, N. S. (1996). Acta Cryst. C52, 789-792.
Hökelek, T., Mert, Y. \& Ünaleročlu, C. (1998). Acta Cryst. C54, 310-313.
Lalioti, N., Raptopoulou, C. P., Terzis, A., Panagiotopoulos, A., Perlepes, S. P. \& Manessi-Zoupa, E. (1998). J. Chem. Soc. Dalton Trans. pp. 1327-1333.
Magill, C. P., Floriani, C., Chiesi-Villa, A. \& Rizzoli, C. (1993). Inorg. Chem. 32, 2729-2735.
Nefedov, S. E., Struchkov, Yu. T., Konnik, O. V. \& Shul'gin, V. F. (1991). Ukr. Khim. Zh. (Russ. Ed.), 57, 685-688.
Pal, S. \& Pal, S. (2002). Acta Cryst. C58, m273-m274.
Persson, I. (1982). Acta Chem. Scand. Ser. A, 36, 7-13.
Rack, J. J., Winkler, J. R. \& Gray, H. B. (2001). J. Am. Chem. Soc. 123, 24322433.

Sequeira, A., Rajagopal, H., Gupta, M. P., Vanhouteghem, F., Lenstra, A. T. H. \& Geise, H. J. (1992). Acta Cryst. C48, 1192-1197.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Shvelashvili, A. E., Miminoshvili, E. B., Bel'skii, V. K., Amirkhanashvili, K. D., Adeishvili, G. P. \& Sakvarelidze, T. N. (2001). Georgian Eng. News, 1, 105109.

Speier, G. \& Fülöp, V. (1989). J. Chem. Soc. Dalton Trans. 11, 2331-2332.
Tahir, M. N., Ülkü, D. \& Movsumov, E. M. (1996). Acta Cryst. C52, 1392-1394.
Tahir, M. N., Ülkü, D., Movsumov, E. M. \& Hökelek, T. (1997). Acta Cryst. C53, 176-179.
Ülkü, D., Ercan, F., Atakol, O. \& Dinçer, F. N. (1997). Acta Cryst. C53, 10561057.

Usubaliev, B. T., Amiraslanov, I. R., Nadzhafov, G. N., Movsumov, E. M., Musaev, F. N. \& Mamedov, Kh. S. (1981). Koord. Khim. 7, 440-444.

